Figure

Mon, 2022-01-17 21:29 -- hwadmin
Summary: 
Figure 15.6: Prescribed fire planning based on models of maximum spot fire distance. The distribution of potential receptive fuels (grey) within the maximum spot fire distance from the perimeter of an actual prescribed fire (black) conducted in the Loess Canyons Experimental Fire Landscape in Nebraska. Calculations are based on flame sources at the perimeter of the burn unit for 10, 20 and 30 mph (16, 32 and 48 kph respectively) wind speed scenarios (black lines). Non-receptive fuels are represented in white. Maximum spot fire distance was computed using SPOT within the BehavePlus modelling software environment (Andrews et al. 2005) and parameterised using local data. Receptive fuels were categorised based on standard fuel models in Anderson (1982) using LANDFIRE’s 2014 geospatial layer. Variation in the spatial distribution of receptive fuels reveals locations with minimal probability of spot fire occurrence to the north-east of the burn unit compared to the south. The distribution of receptive fuels within the maximum spot fire distance perimeter can be used to plan ignition techniques to scale-up prescribed fires, where to focus spot fire monitoring efforts and how to more efficiently allocate personnel on burn units. The inset shows the location of the Loess Canyons Experimental Fire Landscape in Nebraska within the US.
Type: 
Figure
Sub Component: 
Normal
Slug: 
F107
Highwire: Type: 
fragment
Highwire: Parent: 
HighWire: Journal/Corpus Code: 
csirobk
Highwire: pisa_id: 
csirobk;9781486312498/1/BK07909_ch15_sec1_s3/F107
Highwire: pisa_master: 
csirobk;9781486312498/1/BK07909_ch15_sec1_s3/F107
HighWire: Atom Path: 
/csirobk/9781486312498/9781486312498/SEC129/SEC132/F107.atom
Highwire: cpath: 
/content/9781486312498/9781486312498/SEC129/SEC132/F107
Image - Large: 
Highwire: cpathalias: 
/content/csirobk/9781486312498/9781486312498/SEC129/SEC132/F107
Image - Medium: 
Highwire: Variants: 
expansion
Image - Small: 
Highwire: State: 
Released
Contributors: 
<atom:author xmlns:atom="http://www.w3.org/2005/Atom" xmlns:hwp="http://schema.highwire.org/Journal" xmlns:nlm="http://schema.highwire.org/NLM/Journal" hwp:inherited="yes" nlm:contrib-type="author"><atom:name>Dirac Twidwell</atom:name><nlm:name name-style="western" hwp:sortable="Twidwell Dirac"><nlm:surname>Twidwell</nlm:surname><nlm:given-names>Dirac</nlm:given-names></nlm:name></atom:author>
<atom:contributor xmlns:atom="http://www.w3.org/2005/Atom" xmlns:hwp="http://schema.highwire.org/Journal" xmlns:nlm="http://schema.highwire.org/NLM/Journal" hwp:inherited="yes" nlm:contrib-type="author"><atom:name>Rheinhardt Scholtz</atom:name><nlm:name name-style="western" hwp:sortable="Scholtz Rheinhardt"><nlm:surname>Scholtz</nlm:surname><nlm:given-names>Rheinhardt</nlm:given-names></nlm:name></atom:contributor>
<atom:contributor xmlns:atom="http://www.w3.org/2005/Atom" xmlns:hwp="http://schema.highwire.org/Journal" xmlns:nlm="http://schema.highwire.org/NLM/Journal" hwp:inherited="yes" nlm:contrib-type="author"><atom:name>Victoria Donovan</atom:name><nlm:name name-style="western" hwp:sortable="Donovan Victoria"><nlm:surname>Donovan</nlm:surname><nlm:given-names>Victoria</nlm:given-names></nlm:name></atom:contributor>
Last load event: 
Monday, January 17, 2022 - 21:32